Automatic Interpretation of Complex UDC Numbers: Towards Support for Library Systems

Attila Piros
University of Debrecen, Hungary

UDC Seminar, Lisbon, 29-30 October 2015
Goal

• Supporting software systems to utilize Universal Decimal Classification to retrieve information effectively:
 • Find a way to represent each language units of simple and complex UDC numbers in an easy processable format by keeping all of the information stored in the numbers
 • Create an algorithm and implement a reference application to interpret UDC numbers by automatic means
 • Develop and implement conversion methods to different formats
The representation of UDC numbers

• The usual structure of a ‘simple’ UDC number:
 [main table number/range][special auxiliaries][dependent common auxiliaries][independent common auxiliaries (containing numbers/ranges, special auxiliaries and mayhap operations)]

• **Compound** (or ‘complex‘) UDC numbers are built from ‘simple’ numbers by using auxiliary signs

• **Subgrouping** can be used to clarify the order or modify compounds by auxiliaries
The representation of UDC numbers

- After investigating the definitions of the **operations** the following **precedence order** can be defined:
 - + Coordination
 - : Simple relation
 - :: Order-fixing
 - [] Subgrouping
 - ' Synthesis (within special auxiliaries)
- Every UDC number can be represented with a **tree**
- It is possible to define a **schema definition** to determine the exact format to describe the numbers in **XML**
The representation of UDC numbers

• The **complex types** of the XSD describe the possible elements of UDC numbers, e.g. **schedule numbers**:

```xml
<xsd:complexType name="special_auxiliary_number_hyphen">
  <xsd:complexContent>
    <xsd:restriction base="udc:special_auxiliary_number">
      <xsd:attribute name="number1" type="udc:special_auxiliary_number_hyphen_string" use="required"/>
      <xsd:attribute name="number2" type="udc:special_auxiliary_number_hyphen_string" use="optional"/>
    </xsd:restriction>
  </xsd:complexContent>
</xsd:complexType>
```
A common auxiliary sign (operation) can be described by a complex type containing its possible operands:

```
<xsd:complexType name="main_table_relation">
  <xsd:sequence>
    <xsd:choice minOccurs="2" maxOccurs="unbounded">
      <xsd:element name="main_table_number"
        type="udc:main_table_number" minOccurs="1" maxOccurs="1"/>
      <xsd:element name="main_table_synthesis"
        type="udc:main_table_synthesis" minOccurs="1" maxOccurs="1"/>
      <xsd:element name="main_table_subgrouping"
        type="udc:main_table_subgrouping" minOccurs="1" maxOccurs="1"/>
      <xsd:element name="main_table_orderfixing"
        type="udc:main_table_orderfixing" minOccurs="1" maxOccurs="1"/>
    </xsd:choice>
  </xsd:sequence>
</xsd:complexType>
```
The representation of UDC numbers

- **Simple types** have been introduced for validation purposes:

```xml
<xsd:simpleType
    name="special_auxiliary_number_hyphen_string">
    <xsd:restriction base="xsd:string">
        <xsd:pattern value="-d(d{0,1}|d{2}([1-9]d{2})*([1-9]d{0,2})?)"/>
        <xsd:minLength value="2"/>
    </xsd:restriction>
</xsd:simpleType>
```
The automatic interpretation of UDC numbers

- Converting UDC numbers **manually** to a complex format such as that mentioned earlier is an **unrealistic** expectation.
- The **existing records** should also be processed and converted.
- The **UDC number** itself is a **common and stable element** of the varying formats.
The automatic interpretation of UDC numbers

• Has been researched for about 50 years
• A comprehensive research was conducted by Gerhard Riesthuis (Zoeken met woorden, 1998)
• In the course of this research, a new algorithm has been created, which is better suited to the XML schema and the principles which will be explained on the next slide
The automatic interpretation of UDC numbers

• The algorithm must recognize those numbers which keep to the rules for synthesizing UDC numbers

• The algorithm must retain all of the information stored by the number, containing all of its parts and the information pertaining to their context and role

• The parsing method must be fully syntactic as far as is possible

• The process must be fully automated
The automatic interpretation of UDC numbers

• **Online availability** and providing outputs in different formats are also important expectations.

• The software is **available online** for testing purposes on the following URL: http://interpreter-eto.rhcloud.com/
The automatic interpretation of UDC numbers

• **821.111SHAK7ROM.03=112.2**

```xml
<ns:udc_concept xmlns:ns="http://library.inf.unideb.edu/udc/xml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" udc_edition="2005"
notation="821.111SHAK7ROM.03=112.2">
  <ns:description xml:lang="EN">
    Shakespeare: Romeo and Juliet (translated into German)
  </ns:description>
  <ns:main_table_number number1="821.111">
    <ns:special_auxiliary xsi:type="ns:special_auxiliary_number_numerical" number1="7"/>
    <ns:special_auxiliary xsi:type="ns:special_auxiliary_number_pointnought" number1=".03"/>
    <ns:alphabetical_specification order="1" text="SHAK" standard=""/>
    <ns:alphabetical_specification order="2" text="ROM" standard=""/>
    <ns:commonAuxiliaryIndependent xsi:type="ns:commonAuxiliary_of_language" order="1">
      <ns:commonAuxiliary_of_language_number number1="112.2"/>
    </ns:commonAuxiliaryIndependent>
  </ns:main_table_number>
</ns:udc_concept>
```
The automatic interpretation of UDC numbers

• **061.1(100)::[54+66]**

```xml
  <ns:description xml:lang="EN">
    IUPAC - International Union of Pure and Applied Chemistry
  </ns:description>
  <ns:main_table_orderfixing>
    <ns:main_table_number number1="061.1" order="1">
      <ns:common_auxiliary_independent xsi:type="ns:common_auxiliary_of_place">
        <ns:common_auxiliary_of_place_number number1="(100)"/>
      </ns:common_auxiliary_independent>
    </ns:main_table_number>
    <ns:main_table_subgrouping order="2">
      <ns:main_table_addition>
        <ns:main_table_number number1="54"/>
        <ns:main_table_number number1="66"/>
      </ns:main_table_addition>
    </ns:main_table_subgrouping>
  </ns:main_table_orderfixing>
</ns:udc_concept>
```
The conversion of the results

- **KWOC-outputs** in JSON and HTML (have been available since August):
 - 394.4:[92(100+437):329(437).15(091)+327.32(100)], JSON
 - 394.4:[92(100+437):329(437).15(091)+327.32(100)], HTML
 - 510.2/.6, HTML
The conversion of the results

- **Standardized numbers** (has been available since October):
 - 622(437.3)333/.336-022.316=162.3(043)
 - 659.131.7.03:070.485
 - 821.111(73)-32=511.141(082)
 - 821.111(73)-32=511.141(082) (by keeping citation order)
The conversion of the results

- Supporting the further formats are planned and under design (but have not been published yet)
 - RDF/SKOS
 - MARC
The conversion of the results

```
[37:004]
(439)=511.141=111
```

```
37:004

37:004

[37:004]
(439)=511.141=111
```

```
skos:broader
skos:broader
skos:broader

skos:broader

skos:related

skos:related

skos:related

skos:related

=511.141

=111

=rdf:seq

004

37

439

511.141

111
```
The conversion of the results

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xhtml="http://www.w3.org/1999/xhtml"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns:dc élèves="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:skos="http://www.w3.org/2004/02/skos/core#"
 xmlns:udcpcs="http://interpreter-eto.rhcloud.com/rdf/rdf-scheme#">
 <skos:ConceptScheme rdf:about="http://interpreter-eto.rhcloud.com/rdf/rdf-schema#">
 <rdf:type rdf:resource="http://www.w3.org/2004/02/skos/core#ConceptScheme"/>
 <dcterms:title>Complec UDC numbers</dcterms:title>
 <skos:note/>
 </skos:ConceptScheme>
 <skos:Concept rdf:about="http://interpreter-eto.rhcloud.com/rdf/db/F0T0T4D3T7C4T3T9G5T1T1T4T1G1T1T1C">
 <skos:prefLabel xml:lang="en">Computers in the education in Hungary (in English and Hungarian)</skos:prefLabel>
 <rdf:seq udcpcs:commonAuxiliary="http://udcdata.info/000028">
 </rdf:seq>
 </skos:Concept>
</rdf:RDF>
The conversion of the results

- **MARC21**
 084 8#$audc$Universal Decimal Classification$dbIP 0017-1 : 2005$eeng
 153 ##$a796.332$c796.333.4$e796.33$f796.333$hSports. Games. Physical exercises$hBall games$hBall games in which the ball is played with foot and hand$jAssociation and Rugby footballs
 353 ##$a796.333.3$iRugby union football

- **XML**
 `<ns:udc_concept xmlns:ns="http://library.inf.unideb.edu/udc/xml"
 udc_edition="2005" notation="796.332/796.333.4">
 <ns:description xml:lang="EN"/>
 <ns:main_table_number number1="796.332" number2="796.333.4"/>
 </ns:udc_concept>`
The conversion of the results

- A software may be able to **automatically**
 - Recognize **hierarchical** (BT/NT) **relationships** between a **number and its parts**
 - Recognize **associative** (RT) **relationships** between a number and its parts (e.g. common auxiliaries)
 - Provide **suggestions** on **associative relationships** between similar numbers
- Utilizing **MRF** may be required to
 - Identify the exact **broader concepts** of schedule numbers
 - Identify the exact **special auxiliaries**
 - Recognize hierarchical relationships by **breaking down ranges**
 - Provide **suggestions** on associative relationships based upon the **references in the schedules**
- **Human interaction** may be required to
 - Find additional **associative relationships** between complex concepts
Thank you for your attention