Towards the integration of KOS with the Linked Data Cloud

Vincenzo Maltese, Feroz Farazi
DISI – University of Trento
The main message

Reusing and sharing ontologies: the linked data initiative

In reusing and sharing ontologies:
1. It is fundamental to take into account and make explicit their purpose and semantics
2. The difference in the purpose is reflected in the difference in the semantics and in the applications we enable
3. Before integrating them, it is possible and essential to translate them such that they have the same semantics
4. To maximize reuse, publishing an ontology requires appropriate semantics
Building a KOS can be extremely costly

- **Reuse as much as possible**
 - **Need**: discover similar resources and (partially) integrate them
 - **Solution**:
 - Manual approaches (accurate but slow)
 - Automatic tools (need background knowledge, need manual validation, but fast)

- **Share as much as possible**
 - **Need**: incentives, a common framework
 - **Solution**: the Linked Data initiative
Ontologies are extremely diverse

They may differ in scope, purpose, structure, terminology, language, coverage, formality and conceptualization

In sharing and reusing them, it is fundamental to take into account and make explicit:

- The difference in the **purpose** (their goal)
- The difference in the **semantics** (their meaning)
Each term at nodes denotes a real world object or a set of objects
Classification semantics

Each term at nodes denotes a set of documents about real world objects
Difference in the purpose is reflected in different semantics
Descriptive ontologies

- **Purpose**: describing a domain
- **Semantics**: real world semantics
Classification ontologies

- **Purpose**: classifying, searching and browsing documents
- **Semantics**: classification semantics
Difference in the semantics affects what we can do with them
Descriptive ontologies: typical queries

- **Give me all the countries:** {Italy}
- **Give me all the organizations:** {University of Trento, FBK}
- **Give me all the organizations located in Italy:** {University of Trento}
Give me all documents about countries

Give me all documents about Italy: \{d1\} or \{d1, d2\} or \{d1, d2, d3\}? It depends! Do we expand? Are all NT/BT transitive?
Making explicit the semantics allows for automation
Descriptive ontologies: how to make them formal

Assume we use Description Logics (DL):
- Classes correspond to concepts
- Instances correspond to individuals
- Is-a relations are translated into subsumption (\sqsubseteq)
- Other relations correspond to DL roles
Assume we use Description Logics (DL):

- **Classes** correspond to concepts
- **Documents** correspond to individuals
- **Transitive NT/BT relations** are translated into subsumption (\sqsubseteq)
- **RT and non-transitive NT/BT relations** correspond to DL roles
Converting, integrating and reusing ontologies
Convert before integrating ontologies

- It is clearly not appropriate to integrate ontologies having different semantics.

- **Given the purpose select the semantics**
 - If the purpose is to classify, convert both ontologies into classification ontologies
 - If the purpose is to describe, convert both ontologies into descriptive ontologies
From descriptive to classification ontologies

- Convert instances to classes
- Convert instance-of, is-a and transitive part-of into NT/BT relations
- Convert other relations into RT relations

Hierarchies are constructed on the basis of genus-species (is-a, instance-of) and whole-part (part-of) relations [Ranganathan, 1967. Prolegomena to library classification]

The process above can be easily automated

There is a clear loss of information

Vincenzo Maltese
From classification to descriptive ontologies

- Each class has to be mapped to either a real world class or instance
- Each transitive NT/BT relation has to be converted into either an instance-of, is-a or part-of
- Each RT relation and non-transitive NT/BT relation has to be codified into an appropriate real world associative relation

The process above CANNOT be automated

A substantial amount of human effort is required
For those reasons

Distributing schemes as descriptive ontologies would ensure maximum reusability

Let us look at a concrete use case...
GeoWordNet: a multilingual descriptive ontology

- Neat separation between language and conceptual levels
- It is currently in English and Italian
- Built from WordNet, Italian MultiWordNet and GeoNames

<table>
<thead>
<tr>
<th>Objects</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classes</td>
<td>110,459</td>
</tr>
<tr>
<td>Instances</td>
<td>6,927,078</td>
</tr>
<tr>
<td>Instance-of</td>
<td>6,927,078</td>
</tr>
<tr>
<td>Is-a</td>
<td>89,266</td>
</tr>
<tr>
<td>transitive part-of</td>
<td>5,325</td>
</tr>
<tr>
<td>Associative relations</td>
<td>98,907</td>
</tr>
</tbody>
</table>

- We compute the **transitive closure** for both the descriptive and classification version of the ontology
- We use the appropriate semantics according to the task
Conclusions

- There is the need to reuse/share ontologies
- It is fundamental to take into account and make explicit their purpose and semantics
- Particular attention has to be paid to the transitivity of the relations

- Storing ontologies in their descriptive version maximizes reuse and effectiveness
Towards the integration of KOS with the Linked Data Cloud

Thank you for your time and interest!

Questions?

maltese@disi.unitn.it

GeoWordNet open source:

http://geowordnet.semanticmatching.org/
Extra slides
Descriptive ontologies: how to make them formal

- **country** (a) \(\text{instance-of} \) **Italy** (b) \(\text{part-of} \) **Trento** (c)
- **organization** (d) \(\text{is-a} \) **university** (e) \(\text{instance-of} \) **University of Trento** (g) \(\text{collaborates-with} \) **FBK** (h)

university \(\equiv\) organization

university(**UniversityOfTrento)**

collaborates(**UniversityOfTrento, FBK**)
Classification ontologies: how to make them formal

university ⊆ organization

Trento ⊆ Italy

Italy(d1)

...
Limitations of RDF and SKOS

<table>
<thead>
<tr>
<th>RDF</th>
<th>SKOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>No support for disjointness</td>
<td>No support for disjointness</td>
</tr>
<tr>
<td>Classes can be treated as instances</td>
<td>No distinction between classes and instances (we cannot represent documents)</td>
</tr>
<tr>
<td>Transitivity of relations cannot be enforced at the level of entities</td>
<td>We can define non-transitive NT/BT</td>
</tr>
</tbody>
</table>

Is $b \equiv d$?

[Diagram showing instances and classes of University of Trento and their relationships]